Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-C-Phenylerythrono-1,4-lactone

Tony V. Robinson,^a Dennis K. Taylor^b[‡] and Edward R. T. Tiekink^c*

^aDiscipline of Chemistry, University of Adelaide, 5005 South Australia, Australia, ^bDiscipline of Wine and Horticulture, University of Adelaide, Waite Campus, Glen, Osmond 5064, South Australia, Australia, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: edward.tiekink@gmail.com

Received 13 November 2009; accepted 15 November 2009

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.040; wR factor = 0.128; data-to-parameter ratio = 13.8.

The title compound (systematic name: 3,4-dihydroxy-3phenylfuran-2-one), $C_{10}H_{10}O_4$, features a five-membered γ lactone ring with an envelope conformation at the C atom carrying the hydroxy group without the phenyl substituent. In the crystal, supramolecular chains mediated by $O-H \cdots O$ hydrogen bonding are formed along the *a*-axis direction. These are consolidated in the crystal structure by $C-H \cdots O$ contacts.

Related literature

For background on the leaf-closing substance of the tropical legume Leucaena leucocephalam, see: Ueda et al. (2001); Gogoi & Argade (2004); Koumbis et al. (2006). For the synthesis of polyhydroxyated compounds from 1,2-dioxines, see: Robinson et al. (2006, 2009); Valente et al. (2009); Pedersen et al. (2009).

Experimental

Crystal data

 $C_{10}H_{10}O_4$ $M_r = 194.18$ Monoclinic, $P2_1/c$ a = 6.485 (2) Å b = 7.324 (3) Å c = 18.962 (7) Å $\beta = 99.378 \ (7)^{\circ}$

 $V = 888.6 (5) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.11 \text{ mm}^-$ T = 173 K $0.50\,\times\,0.20\,\times\,0.20$ mm

Data collection

```
Rigaku AFC12k/SATURN724
  diffractometer
Absorption correction: multi-scan
  (ABSCOR; Higashi, 1995)
  T_{\min} = 0.778, \ \tilde{T}_{\max} = 1.000
```

Refinement

1

(

$R[F^2 > 2\sigma(F^2)] = 0.040$	2 restraints
$wR(F^2) = 0.128$	H-atom parameters constrained
S = 1.21	$\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$
1834 reflections	$\Delta \rho_{\rm min} = -0.27 \text{ e} \text{ Å}^{-3}$
133 parameters	

21683 measured reflections

 $R_{\rm int} = 0.028$

1834 independent reflections

1818 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$03 - H30 \cdots O2^{i}$	0.84	1.95	2.7717 (19)	167
04−H4o···O3 ⁱⁱ	0.84	1.99	2.8188 (19)	168
$C34 - H34 \cdots O4^{iii}$	0.95	2.46	3.379 (2)	164
ymmetry codes:	(i) $-x, -y +$	1, -z + 1; (i	i) $-x + 1, -y + 1$, -z + 1; (iii)

 $x, -y + \frac{3}{2}, z - \frac{1}{2}$

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

We are grateful to the Australian Research Council for financial support. TVR thanks the Commonwealth Government of Australia for a postgraduate scholarship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2685).

References

- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Gogoi, S. & Argade, N. P. (2004). Tetrahedron, 60, 9093-9097.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Koumbis, A. E., Kaitaidis, A. D. & Kotoulas, S. S. (2006). Tetrahedron Lett. 47, 8479-8481.
- Pedersen, D. S., Robinson, T. V., Taylor, D. K. & Tiekink, E. R. T. (2009). J. Org. Chem. 74, 4400-4403.
- Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Robinson, T. V., Pedersen, D. S., Taylor, D. K. & Tiekink, E. R. T. (2009). J. Org. Chem. 74, 5093-5096.
- Robinson, T. V., Taylor, D. K. & Tiekink, E. R. T. (2006). J. Org. Chem. 71, 7236-7244.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Ueda, M., Sohtome, Y., Ueda, K. & Yamamura, S. (2001). Tetrahedron Lett. 42, 3109-3111.
- Valente, P., Avery, T. D., Taylor, D. K. & Tiekink, E. R. T. (2009). J. Org. Chem. 74. 274-282
- Westrip, S. P. (2009). publCIF. In preparation.

‡ Additional correspondence author, e-mail: dennis.taylor@adelaide.edu.au.

supplementary materials

Acta Cryst. (2009). E65, o3130 [doi:10.1107/S1600536809048478]

2-C-Phenylerythrono-1,4-lactone

T. V. Robinson, D. K. Taylor and E. R. T. Tiekink

Comment

Our recent investigations into the dihydroxyation of the alkene component of 1,2-dioxines has allowed access to a diverse range of polyhydroxyated compounds (Robinson *et al.*, 2006, 2009; Valente *et al.*, 2009). Application of this methodology to the synthesis of erythrono- γ -lactones, such as the title compound, (I), provided a concise route to potassium (2*R*,3*R*)-2,3,4-trihydroxy-2-methylbutanoate (Pedersen *et al.*, 2009), recently identified as a leaf-closing substance of the tropical legume Leucaena leucocephalam (Ueda *et al.*, 2001; Gogoi & Argade, 2004; Koumbis *et al.*, 2006).

The molecular structure of (I), Fig. 1, shows the five-membered γ -lactone ring to adopt an envelope conformation on the C4 atom, with this atom being orientated in the opposite direction to the phenyl ring. Both hydroxy substituents are orientated to the same side of the γ -lactone ring but the hydroxy-H atoms face opposite directions. This arrangement allows each molecule to bridge two neighbouring molecules *via O*—H_{hydroxy}···O_{hydroxy} hydrogen bonds resulting in the formation of ten-membered {···HOC₂O}₂ synthons and the construction of supramolecular chains aligned along the *a* direction, Fig. 2 and Table 1. The chains are consolidated in the 3-D crystal structure *via* C—H···O contacts, Fig. 3 and Table 1.

Experimental

For full synthetic procedures and characterization data see Pedersen *et al.* (2009). To a solution of 2,3-*O*-isopropylidene-2-*C*-phenyl-erythrono-1,4-lactone (159 mg, 0.68 mmol) in MeOH (10 ml) was added activated 50 W Dowex X8 resin (\sim 1 g), and the mixture was stirred at 343 K until complete by TLC (\sim 2–3 days). The reaction was allowed to cool and then filtered to remove the Dowex. The methanol was removed under reduced pressure and the residue was purified by flash chromatography to furnish (I) (115 mg, 87%) as a colourless solid. The pure material was recrystallized from a small amount of dichloromethane which was allowed to slowly evaporate at ambient temperature producing colourless prisms, m.pt. 381–382 K

Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H 0.95–1.00 Å) and were included in the refinement in the riding model approximation with $U_{iso}(H)$ set to $1.2-1.5U_{eq}(C)$. The O–bound H-atoms were located in a difference Fourier map and refined with O–H restraints of 0.840 ± 0.001 Å, and with $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 35% probability level.

Fig. 2. Supramolecular chain formation along the *a* axis in (I) mediated by O—H…O hydrogen bonds (orange dashed lines).

Fig. 3. View in projection along the *a* axis in (I) showing the C—H···O contacts (blue dashed lines) linking the supramolecular chains (aligned along *a*) stabilized by O—H···O hydrogen bonds (orange dashed lines).

3,4-dihydroxy-3-phenylfuran-2-one

Crystal data	
$C_{10}H_{10}O_4$	$F_{000} = 408$
$M_r = 194.18$	$D_{\rm x} = 1.452 \ {\rm Mg \ m^{-3}}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71070$ Å
Hall symbol: -P 2ybc	Cell parameters from 3641 reflections
a = 6.485 (2) Å	$\theta = 2.2 - 27.5^{\circ}$
b = 7.324 (3) Å	$\mu = 0.11 \text{ mm}^{-1}$
c = 18.962 (7) Å	<i>T</i> = 173 K
$\beta = 99.378 \ (7)^{\circ}$	Block, colourless
$V = 888.6 (5) \text{ Å}^3$	$0.50\times0.20\times0.20\ mm$
7 = 4	

Data collection

Rigaku AFC12ĸ/SATURN724 diffractometer	1834 independent reflections
Radiation source: fine-focus sealed tube	1818 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\text{int}} = 0.028$
T = 173 K	$\theta_{\text{max}} = 26.5^{\circ}$
ω scans	$\theta_{\min} = 2.2^{\circ}$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$h = -8 \rightarrow 7$
$T_{\min} = 0.778, \ T_{\max} = 1.000$	$k = -9 \rightarrow 9$

supplementary materials

21683 measured reflections	$l = -23 \rightarrow 23$
----------------------------	--------------------------

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.040$	H-atom parameters constrained
$wR(F^2) = 0.128$	$w = 1/[\sigma^2(F_o^2) + (0.0689P)^2 + 0.2568P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.21	$(\Delta/\sigma)_{\rm max} < 0.001$
1834 reflections	$\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$
133 parameters	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$
2 restraints	Extinction correction: none
The second se	

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	-0.00052 (16)	0.88359 (15)	0.43151 (5)	0.0315 (3)
O2	-0.14194 (16)	0.60605 (17)	0.42959 (6)	0.0353 (3)
O3	0.27440 (16)	0.46977 (14)	0.44174 (5)	0.0274 (3)
H3O	0.2312	0.4653	0.4811	0.041*
O4	0.39267 (17)	0.77862 (15)	0.52318 (5)	0.0299 (3)
H4O	0.4778	0.6920	0.5321	0.045*
C2	0.0052 (2)	0.7033 (2)	0.42422 (7)	0.0260 (3)
C3	0.2212 (2)	0.64295 (18)	0.41109 (7)	0.0224 (3)
C4	0.3562 (2)	0.80116 (19)	0.44799 (7)	0.0242 (3)
H4	0.4886	0.8182	0.4282	0.029*
C5	0.2076 (2)	0.9607 (2)	0.43117 (8)	0.0292 (3)
H5A	0.2386	1.0574	0.4678	0.035*
H5B	0.2183	1.0132	0.3838	0.035*
C31	0.2337 (2)	0.63650 (18)	0.33154 (7)	0.0229 (3)
C32	0.4037 (2)	0.5486 (2)	0.31027 (8)	0.0287 (3)
H32	0.5047	0.4900	0.3448	0.034*

supplementary materials

C33	0.4263 (3)	0.5462 (2)	0.23878 (8)	0.0336 (4)
H33	0.5412	0.4839	0.2245	0.040*
C34	0.2823 (3)	0.6341 (2)	0.18799 (8)	0.0323 (4)
H34	0.2993	0.6336	0.1392	0.039*
C35	0.1141 (3)	0.7223 (2)	0.20881 (8)	0.0313 (4)
H35	0.0155	0.7833	0.1742	0.038*
C36	0.0879 (2)	0.72227 (19)	0.28042 (8)	0.0272 (3)
H36	-0.0299	0.7811	0.2942	0.033*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0283 (6)	0.0361 (6)	0.0304 (6)	0.0074 (4)	0.0055 (4)	-0.0040 (4)
02	0.0265 (6)	0.0529 (7)	0.0274 (5)	-0.0055 (5)	0.0068 (4)	0.0059 (5)
03	0.0346 (6)	0.0268 (5)	0.0221 (5)	0.0030 (4)	0.0078 (4)	0.0050 (4)
04	0.0351 (6)	0.0355 (6)	0.0185 (5)	0.0059 (4)	0.0027 (4)	-0.0025 (4)
C2	0.0261 (7)	0.0363 (8)	0.0158 (6)	0.0018 (5)	0.0039 (5)	0.0016 (5)
C3	0.0239 (7)	0.0248 (7)	0.0189 (6)	0.0020 (5)	0.0043 (5)	0.0020 (5)
C4	0.0263 (7)	0.0280 (7)	0.0187 (6)	-0.0006 (5)	0.0048 (5)	-0.0012 (5)
C5	0.0326 (8)	0.0270 (7)	0.0277 (7)	0.0011 (6)	0.0040 (6)	-0.0018 (5)
C31	0.0267 (7)	0.0230 (6)	0.0192 (6)	-0.0029 (5)	0.0048 (5)	-0.0007 (5)
C32	0.0299 (7)	0.0326 (7)	0.0242 (7)	0.0030 (6)	0.0060 (5)	0.0000 (5)
C33	0.0372 (8)	0.0382 (8)	0.0281 (7)	0.0002 (6)	0.0131 (6)	-0.0041 (6)
C34	0.0471 (9)	0.0314 (7)	0.0199 (6)	-0.0079 (6)	0.0100 (6)	-0.0030 (5)
C35	0.0417 (9)	0.0281 (7)	0.0218 (7)	-0.0011 (6)	-0.0015 (6)	0.0024 (5)
C36	0.0302 (7)	0.0273 (7)	0.0236 (7)	0.0019 (5)	0.0027 (5)	-0.0007 (5)

Geometric parameters (Å, °)

O1—C2	1.3286 (19)	С5—Н5В	0.9900
O1—C5	1.4639 (19)	C31—C36	1.389 (2)
O2—C2	1.2085 (18)	C31—C32	1.392 (2)
O3—C3	1.4142 (16)	C32—C33	1.387 (2)
O3—H3O	0.8400	С32—Н32	0.9500
O4—C4	1.4164 (16)	C33—C34	1.386 (2)
O4—H4O	0.8401	С33—Н33	0.9500
C2—C3	1.5275 (19)	C34—C35	1.379 (2)
C3—C31	1.5243 (18)	C34—H34	0.9500
C3—C4	1.5486 (19)	C35—C36	1.396 (2)
C4—C5	1.515 (2)	С35—Н35	0.9500
C4—H4	1.0000	С36—Н36	0.9500
С5—Н5А	0.9900		
C2—O1—C5	109.94 (11)	O1—C5—H5B	110.8
С3—О3—НЗО	107.8	C4—C5—H5B	110.8
C4—O4—H4O	106.6	H5A—C5—H5B	108.8
O2—C2—O1	122.75 (13)	C36—C31—C32	119.22 (13)
O2—C2—C3	126.94 (14)	C36—C31—C3	122.46 (12)
O1—C2—C3	110.28 (12)	C32—C31—C3	118.24 (12)

O3—C3—C31	109.28 (10)	C33—C32—C31	120.24 (14)
O3—C3—C2	111.18 (11)	С33—С32—Н32	119.9
C31—C3—C2	111.60 (10)	С31—С32—Н32	119.9
O3—C3—C4	113.78 (11)	C34—C33—C32	120.46 (14)
C31—C3—C4	110.68 (10)	С34—С33—Н33	119.8
C2—C3—C4	100.11 (11)	С32—С33—Н33	119.8
O4—C4—C5	107.35 (11)	C35—C34—C33	119.55 (13)
O4—C4—C3	110.92 (11)	С35—С34—Н34	120.2
C5—C4—C3	100.87 (11)	С33—С34—Н34	120.2
O4—C4—H4	112.3	C34—C35—C36	120.39 (14)
C5—C4—H4	112.3	С34—С35—Н35	119.8
C3—C4—H4	112.3	С36—С35—Н35	119.8
O1—C5—C4	104.89 (11)	C31—C36—C35	120.14 (14)
O1—C5—H5A	110.8	С31—С36—Н36	119.9
C4—C5—H5A	110.8	С35—С36—Н36	119.9
C5—O1—C2—O2	172.88 (12)	C3—C4—C5—O1	33.83 (13)
C5—O1—C2—C3	-5.30 (14)	O3—C3—C31—C36	139.75 (13)
O2—C2—C3—O3	-31.23 (18)	C2—C3—C31—C36	16.37 (18)
O1—C2—C3—O3	146.85 (11)	C4—C3—C31—C36	-94.19 (15)
O2—C2—C3—C31	91.06 (16)	O3—C3—C31—C32	-43.46 (16)
O1—C2—C3—C31	-90.86 (13)	C2—C3—C31—C32	-166.83 (12)
O2—C2—C3—C4	-151.79 (13)	C4—C3—C31—C32	82.61 (15)
O1—C2—C3—C4	26.29 (13)	C36—C31—C32—C33	-0.3 (2)
O3—C3—C4—O4	-40.31 (15)	C3—C31—C32—C33	-177.20 (13)
C31—C3—C4—O4	-163.81 (11)	C31—C32—C33—C34	1.2 (2)
C2—C3—C4—O4	78.35 (12)	C32—C33—C34—C35	-0.9 (2)
O3—C3—C4—C5	-153.79 (11)	C33—C34—C35—C36	-0.4 (2)
C31—C3—C4—C5	82.71 (13)	C32—C31—C36—C35	-1.0 (2)
C2—C3—C4—C5	-35.13 (12)	C3—C31—C36—C35	175.79 (12)
C2—O1—C5—C4	-18.85 (14)	C34—C35—C36—C31	1.3 (2)
O4—C4—C5—O1	-82.33 (13)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O3—H3o···O2 ⁱ	0.84	1.95	2.7717 (19)	167
O4—H4o···O3 ⁱⁱ	0.84	1.99	2.8188 (19)	168
C34—H34…O4 ⁱⁱⁱ	0.95	2.46	3.379 (2)	164
		. 2 / 2 1 / 2		

Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x, -y+3/2, z-1/2.

Fig. 3

